Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474037

RESUMO

Protein kinase D (PKD) enzymes play important roles in regulating myocardial contraction, hypertrophy, and remodeling. One of the proteins phosphorylated by PKD is titin, which is involved in myofilament function. In this study, we aimed to investigate the role of PKD in cardiomyocyte function under conditions of oxidative stress. To do this, we used mice with a cardiomyocyte-specific knock-out of Prkd1, which encodes PKD1 (Prkd1loxP/loxP; αMHC-Cre; PKD1 cKO), as well as wild type littermate controls (Prkd1loxP/loxP; WT). We isolated permeabilized cardiomyocytes from PKD1 cKO mice and found that they exhibited increased passive stiffness (Fpassive), which was associated with increased oxidation of titin, but showed no change in titin ubiquitination. Additionally, the PKD1 cKO mice showed increased myofilament calcium (Ca2+) sensitivity (pCa50) and reduced maximum Ca2+-activated tension. These changes were accompanied by increased oxidation and reduced phosphorylation of the small myofilament protein cardiac myosin binding protein C (cMyBPC), as well as altered phosphorylation levels at different phosphosites in troponin I (TnI). The increased Fpassive and pCa50, and the reduced maximum Ca2+-activated tension were reversed when we treated the isolated permeabilized cardiomyocytes with reduced glutathione (GSH). This indicated that myofilament protein oxidation contributes to cardiomyocyte dysfunction. Furthermore, the PKD1 cKO mice exhibited increased oxidative stress and increased expression of pro-inflammatory markers interleukin (IL)-6, IL-18, and tumor necrosis factor alpha (TNF-α). Both oxidative stress and inflammation contributed to an increase in microtubule-associated protein 1 light chain 3 (LC3)-II levels and heat shock response by inhibiting the mammalian target of rapamycin (mTOR) in the PKD1 cKO mouse myocytes. These findings revealed a previously unknown role for PKD1 in regulating diastolic passive properties, myofilament Ca2+ sensitivity, and maximum Ca2+-activated tension under conditions of oxidative stress. Finally, we emphasized the importance of PKD1 in maintaining the balance of oxidative stress and inflammation in the context of autophagy, as well as cardiomyocyte function.


Assuntos
Miofibrilas , Proteína Quinase C , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Conectina/metabolismo , Miofibrilas/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas dos Microfilamentos/metabolismo , Homeostase , Inflamação/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismo
3.
Int J Cardiol ; 362: 196-205, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643215

RESUMO

INTRODUCTION: The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. 'cytokine storm') and oxidative stress are likely involved. METHODS AND RESULTS: Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. CONCLUSION: This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Inflamação , Miócitos Cardíacos , Estresse Oxidativo
4.
ESC Heart Fail ; 9(4): 2585-2600, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584900

RESUMO

AIMS: Volume overload (VO) induced hypertrophy is one of the hallmarks to the development of heart diseases. Understanding the compensatory mechanisms involved in this process might help preventing the disease progression. METHODS AND RESULTS: Therefore, the present study used 2 months old Wistar rats, which underwent an aortocaval fistula to develop VO-induced hypertrophy. The animals were subdivided into four different groups, two sham operated animals served as age-matched controls and two groups with aortocaval fistula. Echocardiography was performed prior termination after 4- and 8-month. Functional and molecular changes of several sarcomeric proteins and their signalling pathways involved in the regulation and modulation of cardiomyocyte function were investigated. RESULTS: The model was characterized with preserved ejection fraction in all groups and with elevated heart/body weight ratio, left/right ventricular and atrial weight at 4- and 8-month, which indicates VO-induced hypertrophy. In addition, 8-months groups showed increased left ventricular internal diameter during diastole, RV internal diameter, stroke volume and velocity-time index compared with their age-matched controls. These changes were accompanied by increased Ca2+ sensitivity and titin-based cardiomyocyte stiffness in 8-month VO rats compared with other groups. The altered cardiomyocyte mechanics was associated with phosphorylation deficit of sarcomeric proteins cardiac troponin I, myosin binding protein C and titin, also accompanied with impaired signalling pathways involved in phosphorylation of these sarcomeric proteins in 8-month VO rats compared with age-matched control group. Impaired protein phosphorylation status and dysregulated signalling pathways were associated with significant alterations in the oxidative status of both kinases CaMKII and PKG explaining by this the elevated Ca2+ sensitivity and titin-based cardiomyocyte stiffness and perhaps the development of hypertrophy. CONCLUSIONS: Our findings showed VO-induced cardiomyocyte dysfunction via deranged phosphorylation of myofilament proteins and signalling pathways due to increased oxidative state of CaMKII and PKG and this might contribute to the development of hypertrophy.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Insuficiência Cardíaca , Animais , Cálcio/metabolismo , Conectina/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico , Hipertrofia , Ratos , Ratos Wistar
5.
Circ Res ; 130(7): 994-1010, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35193397

RESUMO

RATIONALE: Atrial fibrillation (AF) and heart failure often coexist, but their interaction is poorly understood. Clinical data indicate that the arrhythmic component of AF may contribute to left ventricular (LV) dysfunction. OBJECTIVE: This study investigates the effects and molecular mechanisms of AF on the human LV. METHODS AND RESULTS: Ventricular myocardium from patients with aortic stenosis and preserved LV function with sinus rhythm or rate-controlled AF was studied. LV myocardium from patients with sinus rhythm and patients with AF showed no differences in fibrosis. In functional studies, systolic Ca2+ transient amplitude of LV cardiomyocytes was reduced in patients with AF, while diastolic Ca2+ levels and Ca2+ transient kinetics were not statistically different. These results were confirmed in LV cardiomyocytes from nonfailing donors with sinus rhythm or AF. Moreover, normofrequent AF was simulated in vitro using arrhythmic or rhythmic pacing (both at 60 bpm). After 24 hours of AF-simulation, human LV cardiomyocytes from nonfailing donors showed an impaired Ca2+ transient amplitude. For a standardized investigation of AF-simulation, human iPSC-cardiomyocytes were tested. Seven days of AF-simulation caused reduced systolic Ca2+ transient amplitude and sarcoplasmic reticulum Ca2+ load likely because of an increased diastolic sarcoplasmic reticulum Ca2+ leak. Moreover, cytosolic Na+ concentration was elevated and action potential duration was prolonged after AF-simulation. We detected an increased late Na+ current as a potential trigger for the detrimentally altered Ca2+/Na+-interplay. Mechanistically, reactive oxygen species were higher in the LV of patients with AF. CaMKII (Ca2+/calmodulin-dependent protein kinase IIδc) was found to be more oxidized at Met281/282 in the LV of patients with AF leading to an increased CaMKII activity and consequent increased RyR2 phosphorylation. CaMKII inhibition and ROS scavenging ameliorated impaired systolic Ca2+ handling after AF-simulation. CONCLUSIONS: AF causes distinct functional and molecular remodeling of the human LV. This translational study provides the first mechanistic characterization and the potential negative impact of AF in the absence of tachycardia on the human ventricle.


Assuntos
Fibrilação Atrial , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
7.
Br J Pharmacol ; 179(10): 2240-2258, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34811751

RESUMO

BACKGROUND AND PURPOSE: The small molecule BGP-15 has been reported to alleviate symptoms of heart failure and improve muscle function in murine models. Here, we investigated the acute and chronic effects of BGP-15 in a rabbit model of atherosclerotic cardiomyopathy. EXPERIMENTAL APPROACH: Rabbits were maintained on standard chow (control) or atherogenic diet (hypercholesterolemic) for 16 weeks. BGP-15 was administered intravenously (once) or orally (for 16 weeks), to assess acute and chronic effects. Cardiac function was evaluated by echocardiography, endothelium-dependent vasorelaxation was assessed and key molecules in the protein kinase G (PKG) pathway were examined by enzyme-linked immunosorbent assay (ELISA) and western blot. Passive force generation was investigated in skinned cardiomyocytes. KEY RESULTS: Both acute and chronic BGP-15 treatments improved the diastolic performance of the diseased heart. However, vasorelaxation and serum lipid markers were unaffected. Myocardial cyclic guanosine monophosphate (cGMP) levels were elevated in the BGP-15-treated group, along with preserved PKG activity and increased phospholamban Ser16-phosphorylation. PDE5 expression decreased in the BGP-15-treated group and PDE1 was inhibited. Cardiomyocyte passive tension reduced in BGP-15-treated rabbits, the ratio of titin N2BA/N2B isoforms increased and PKG-dependent N2B-titin phosphorylation elevated. CONCLUSIONS AND IMPLICATIONS: BGP-15 treatment improves diastolic function, reduces cardiomyocyte stiffness and restores titin compliance in a rabbit model of atherosclerotic cardiomyopathy by increasing the activity of the cGMP-PKG pathway. As BGP-15 has been proven to be safe, it may be clinically useful in the treatment of diastolic dysfunction.


Assuntos
Cardiomiopatias , Niacina , Animais , Cardiomiopatias/tratamento farmacológico , Diástole , Camundongos , Miocárdio , Oximas , Piperidinas , Coelhos
8.
Int J Cardiol ; 344: 160-169, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517018

RESUMO

Hypertrophic cardiomyopathy (HCM) is a complex myocardial disorder with no well-established disease-modifying therapy so far. Our study aimed to investigate how autophagy, oxidative stress, inflammation, stress signalling pathways, and apoptosis are hallmark of HCM and their contribution to the cardiac dysfunction. Demembranated cardiomyocytes from patients with HCM display increased titin-based stiffness (Fpassive), which was corrected upon antioxidant treatment. Titin as a main determinant of Fpassive was S-glutathionylated and highly ubiquitinated in HCM patients. This was associated with a shift in the balance of reduced and oxidized forms of glutathione (GSH and GSSG, respectively). Both heat shock proteins (HSP27 and α-ß crystalline) were upregulated and S-glutathionylated in HCM. Administration of HSPs in vitro significantly reduced HCM cardiomyocyte stiffness. High levels of the phosphorylated monomeric superoxide anion-generating endothelial nitric oxide synthase (eNOS), decreased nitric oxide (NO) bioavailability, decreased soluble guanylyl cyclase (sGC) activity, and high levels of 3-nitrotyrosine were observed in HCM. Many regulators of signal transduction pathways that are involved in autophagy, apoptosis, cardiac contractility, and growth including the mitogen-activated protein kinase (MAPK), protein kinase B (AKT), glycogen synthase kinase 3ß (GSK-3ß), mammalian target of rapamycin (mTOR), forkhead box O transcription factor (FOXO), c-Jun N-terminal protein kinase (JNK), and extracellular-signal-regulated kinase (ERK1/2) were modified in HCM. The apoptotic factors cathepsin, procaspase 3, procaspase 9 and caspase 12, but not caspase 9, were elevated in HCM hearts and associated with increased proinflammatory cytokines (Interleukin 6 (IL-6), interleukin 18 (IL-18), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), the Toll-like receptors 2 (TLR2) and the Toll-like receptors 4 (TLR4)) and oxidative stress (3-nitrotyrosine and hydrogen peroxide (H2O2)). Here we reveal stress signalling and impaired PQS as potential mechanisms underlying the HCM phenotype. Our data suggest that reducing oxidative stress can be a viable therapeutic approach to attenuating the severity of cardiac dysfunction in heart failure and potentially in HCM and prevent its progression.


Assuntos
Cardiomiopatia Hipertrófica , Peróxido de Hidrogênio , Apoptose , MAP Quinases Reguladas por Sinal Extracelular , Humanos , Estresse Oxidativo
9.
Antioxidants (Basel) ; 10(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34356367

RESUMO

Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca2+-activated tension and Ca2+ sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca2+ sensitivity and maximal tension correlated strongly with the myofilament oxidation levels, hypo-phosphorylation, and oxidative stress parameters that were measured in all the samples. Furthermore, we detected elevated titin-based myocardial stiffness in HF myocytes, which was reversed by PKA and reduced glutathione enzyme treatment. Finally, many oxidative stress and inflammation parameters were significantly elevated in failing hearts compared to non-failing hearts, and corrected upon treatment with the anti-oxidant GSH enzyme. Here, we provide evidence that the altered mechanical properties of failing human cardiomyocytes are partially due to phosphorylation, S-glutathionylation, and the interplay between the two post-translational modifications, which contribute to the development of heart failure.

10.
Front Physiol ; 11: 345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523538

RESUMO

AIMS: Our aim was to investigate the effect of nitric oxide (NO)-independent activation of soluble guanylyl cyclase (sGC) on cardiomyocyte function in a hypertensive animal model with diastolic dysfunction and in biopsies from human heart failure with preserved ejection fraction (HFpEF). METHODS: Dahl salt-sensitive (DSS) rats and control rats were fed a high-salt diet for 10 weeks and then acutely treated in vivo with the sGC activator BAY 58-2667 (cinaciguat) for 30 min. Single skinned cardiomyocyte passive stiffness (Fpassive) was determined in rats and human myocardium biopsies before and after acute treatment. Titin phosphorylation, activation of the NO/sGC/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade, as well as hypertrophic pathways including NO/sGC/cGMP/PKG, PKA, calcium-calmodulin kinase II (CaMKII), extracellular signal-regulated kinase 2 (ERK2), and PKC were assessed. In addition, we explored the contribution of pro-inflammatory cytokines and oxidative stress levels to the modulation of cardiomyocyte function. Immunohistochemistry and electron microscopy were used to assess the translocation of sGC and connexin 43 proteins in the rat model before and after treatment. RESULTS: High cardiomyocyte Fpassive was found in rats and human myocardial biopsies compared to control groups, which was attributed to hypophosphorylation of total titin and to deranged site-specific phosphorylation of elastic titin regions. This was accompanied by lower levels of PKG and PKA activity, along with dysregulation of hypertrophic pathway markers such as CaMKII, PKC, and ERK2. Furthermore, DSS rats and human myocardium biopsies showed higher pro-inflammatory cytokines and oxidative stress compared to controls. DSS animals benefited from treatment with the sGC activator, as Fpassive, titin phosphorylation, PKG and the hypertrophic pathway kinases, pro-inflammatory cytokines, and oxidative stress markers all significantly improved to the level observed in controls. Immunohistochemistry and electron microscopy revealed a translocation of sGC protein toward the intercalated disc and t-tubuli following treatment in both control and DSS samples. This translocation was confirmed by staining for the gap junction protein connexin 43 at the intercalated disk. DSS rats showed a disrupted connexin 43 pattern, and sGC activator was able to partially reduce disruption and increase expression of connexin 43. In human HFpEF biopsies, the high Fpassive, reduced titin phosphorylation, dysregulation of the NO-sGC-cGMP-PKG pathway and PKA activity level, and activity of kinases involved in hypertrophic pathways CaMKII, PKC, and ERK2 were all significantly improved by sGC treatment and accompanied by a reduction in pro-inflammatory cytokines and oxidative stress markers. CONCLUSION: Our data show that sGC activator improves cardiomyocyte function, reduces inflammation and oxidative stress, improves sGC-PKG signaling, and normalizes hypertrophic kinases, indicating that it is a potential treatment option for HFpEF patients and perhaps also for cases with increased hypertrophic signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...